

01

Unified Intelligence.

Redefining decision intelligence
in real-world operational
environments.

This whitepaper is part of a four-part series. The series introduces Unified Intelligence as a new category, explains why 'always-on' intelligence is required to unlock the potential of AI, covers how to adopt the technology and embed it into complex operations, and imagines a world in which Unified Intelligence is ubiquitous.

Introduction.

Despite billions invested in data platforms, analytics, and AI, most organisations remain operationally blind. They can measure almost everything. They can explain yesterday in extraordinary detail. Yet when reality shifts, when disruption begins, constraints tighten, and decisions must be made under pressure, the intelligence disappears.

Operations do not fail because information is missing. They fail because understanding arrives too late.

In complex environments, the most damaging problems rarely announce themselves as obvious breakdowns. They emerge as small deviations: a delayed vessel, a minor asset failure, a weather window narrowing, a single resource slipping out of sync. Individually, these signals appear manageable. Collectively, they propagate through tightly coupled systems, turning routine variation into systemic disruption.

Traditional approaches are not designed for this. Forecasts predict isolated variables. Digital twins simulate scenarios. Copilots answer questions when asked. But none maintain a continuously updated understanding of how the system is evolving, or how consequences are unfolding across space and time.

This exposes the deeper issue: 'intelligence' is universally valued but rarely defined. Within organisations, it has come to mean everything from reporting to analytics to AI models. These tools have utility, but they remain fragmented, episodic, and fundamentally reactive.

Real operational intelligence cannot be episodic. It cannot depend on someone knowing what to ask. It must exist continuously, before disruption is visible, and reason explicitly about how decisions reshape reality.

This paper introduces Unified Intelligence: a new category designed for high-consequence operational environments. Unified Intelligence maintains a live, holistic operational picture, anticipates change, models cascading impacts, and surfaces the right insight to the right people without prompting. It is not another dashboard, not a digital twin in isolation, and not an AI agent layered on top of data. It is an always-on intelligence capability embedded within the operation itself.

We explore what Unified Intelligence is, why existing approaches fail, and the technology stack required to deliver consequence-aware intelligence that reflects how real systems behave under pressure.

Unified Intelligence, a new category.

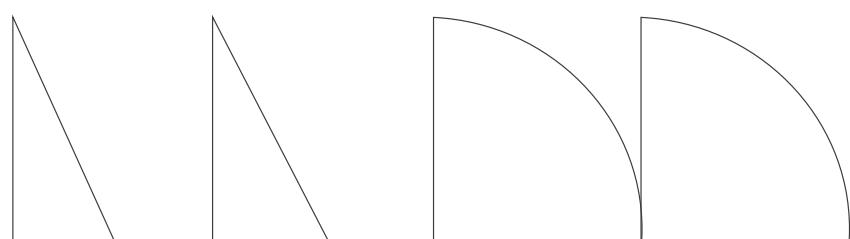
What is Unified Intelligence?

At its most fundamental level, intelligence is the capacity of a system, whether human or organisational, to maintain an understanding of its state, anticipate change, and reason about the consequences of its actions. Applied to real-world operations, intelligence becomes the ability to understand how a live system will behave under changing conditions, and to anticipate the downstream effects of decisions before they are made. This capability spans multiple horizons, ranging from long-term transformation and strategic planning to tactical decision-making and real-time operational response. What changes is the context, not the nature of the intelligence itself. In every case, the genesis is the same: a continuously maintained understanding of state, change, and consequence. Building this understanding requires going far beyond what is typically described as 'operational' or 'strategic' intelligence today.

Before going further, it is important to be clear about what intelligence is not. Data alone is not intelligence: a sensor reading, system metric, or status update is merely a snapshot in time. Even when aggregated into trends or reports, data remains retrospective, describing what has already happened rather than explaining why it is happening, what will happen next, or where intervention matters most.

Predictions and forecasts move closer to intelligence. This is where past data can be used to build forecasts or train mathematical models to predict the likely trajectory of a specific thing. An ETA, a traffic forecast, a schedule.

But predictive models in isolation assume continuity: they project forward from historical patterns, but they cannot continuously adapt as real-world conditions shift and new constraints emerge. In live operations, outcomes are shaped not by one forecasted variable, but by


the interaction of many changing factors and model outputs, meaning a single prediction quickly becomes incomplete, context-blind, and operationally irrelevant.

Live operations are not collections of independent metrics. They are dynamic, interconnected systems. Decision-makers operating within them must understand the whole picture, how conditions interact, how decisions propagate, and how the system will respond over time.

Analytics platforms, dashboards, BI tools, and even predictive models are often labelled as operational intelligence, but this is misleading. They provide visibility, not intelligence: metrics, trends, and isolated forecasts without a coherent, real-time understanding of how an operation is evolving. When conditions shift and constraints tighten, their insight becomes retrospective rather than foresight.

True intelligence is holistic and dynamic. It understands how the whole system interacts, using analytics and prediction not in isolation but to diagnose, anticipate, and respond to change as it unfolds. It is a full-colour, live picture of reality, continuously updating as the world changes.

Most people intuitively understand intelligence from spy movies. The protagonist isn't staring at a single clue or a static report, they're piecing together a live picture: where someone is, what's changed, who they've contacted, and what might happen next. The value isn't in any one datapoint, but in how the fragments connect into a coherent understanding of what's unfolding. Predictions work the same way. The story is never a simple continuation of current trends. A small, unexpected move. A missed meeting, a diverted car, a brief delay, triggers a chain of consequences that reshapes what happens next.

"Unified Intelligence is a new category born out of the convergence of increasing data rates, rapidly advancing AI and significantly reducing costs to compute."

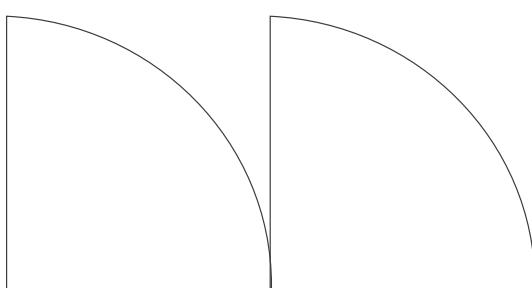
The operative's skill is not forecasting in isolation, but anticipating how seemingly trivial events propagate into something far more significant.

In those stories, it's obvious why a delayed or partial view fails. If the picture isn't current, the decision comes too late. Intelligence only works when it is holistic, continuously updated, and focused on consequence, not just information.

Real-world operations are no different. Decisions are made under time pressure, with incomplete information, across multiple teams, constraints, and objectives. Actions taken in one part of the system create effects elsewhere, often delayed and non-obvious. Yet traditional approaches describe operations in pieces: a report here, a dashboard there, an isolated forecast somewhere else. They do not provide a coherent understanding of how the system behaves.

It is tempting to dismiss the comparison to the spy movie as exaggerated. It is not. Operational decisions may not determine national security, but they routinely determine safety, service reliability, financial performance, and resilience. The consequences are real: lost revenue, displaced resources, degraded service, and systemic fragility. And we all saw how vital backbone sectors such as supply chain and logistics were only a few years ago during the pandemic.

Today, organisations attempt to assemble a holistic picture intermittently. Consultants are hired to produce analyses at a point-in-time, akin to a health check-up with your GP. But reality is not episodic. It's continuous, and intelligence must be too. Without it, operators in live operations are forced to stitch together


understanding manually from many systems and reports, often relying on experience and intuition.

Unified Intelligence is a capability designed to maintain a holistic, continuously updated understanding of complex operational systems. It functions as an always-on intelligence layer embedded within the organisation itself, maintaining a unified, full-colour picture, autonomously delivering insights and recommendations to where they're needed most. Unlike today's episodic methods, Unified Intelligence is always on, continuously updating a holistic model of reality.

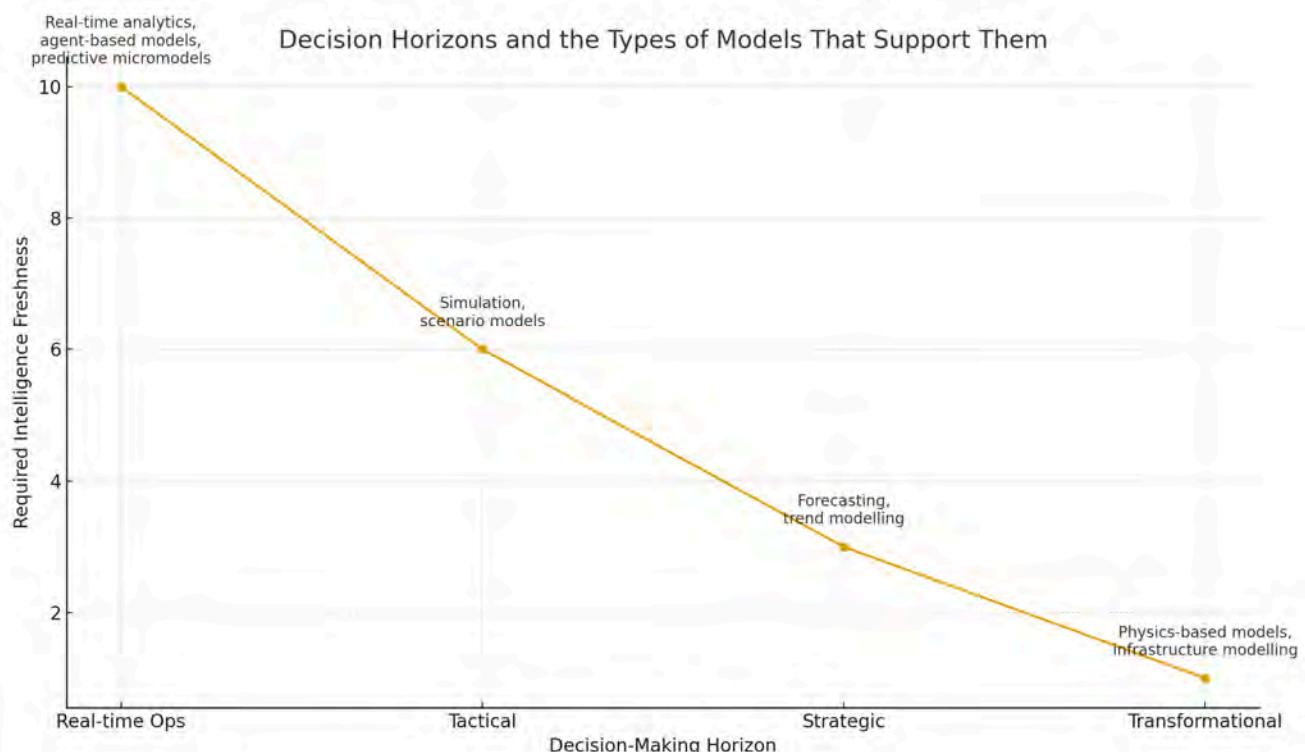
At this point, a reasonable question arises: isn't what's being described a Digital Twin?

In part, yes, but only in the same way that a map is part of navigation. The term 'Digital Twin' has come to mean many things to many people. For some, it is an engineering artefact, for others, a strategic analytics platform. Fundamentally, Digital Twins are tools for functions or departments, whereas Unified Intelligence is an embedded capability that can be engaged in many evolving ways.

In practice, the intelligence derived from a Digital Twin is limited by what has been explicitly modelled and what has been chosen to visualise. Most twins surface insight through static dashboards or episodic scenario exploration, leaving operators to infer consequence manually. The operation may be represented in high fidelity, but it is rarely continuously understood in terms of impact and evolving optionality. When new information needs to be surfaced, new visualisations need to be developed.

Large Language Models (LLMs) are appearing as a solution to this. They allow users to ask anything of the Digital Twin meaning the current constraints around outputted tools disappear. But they need to be asked, often living as chatbots or copilots, meaning they rely on human operators to *think* to ask. In complex operations, that is precisely the problem. The most valuable intelligence exists *before* people think to ask. If intelligence depends on a human forming the right question in time, it will always arrive too late.

Unified Intelligence is not a dashboard, not a twin in isolation, and not an agent waiting for prompts. It is an always-on operational capability, continuously monitoring, reasoning and selecting relevant information to push to operators.


This capability has only recently become feasible. Advances in sensing, falling costs, and the proliferation of connected devices have led to unprecedented volumes of live operational data. At the same time, progress in AI and modelling now makes it possible to reason across these evolving data streams in real time. Combined with growing pressure on critical infrastructure to improve resilience, performance, and responsiveness, this is driving a shift from episodic analysis toward continuously maintained intelligence.

Decision-making horizons.

Unified Intelligence exists to support better decisions, but decisions are not uniform. Within any organisation, decisions vary dramatically in frequency, time horizon, and consequence.

Operational decision-making spans four horizons: real-time operational, tactical, strategic, and transformational. As the chart shows, different modelling approaches apply to the different decision horizons. Transformational decisions often rely on complex, highly detailed models that cover a much broader range of scenarios, e.g., where to build a road considering existing network constraints, future travel demands, and the new housing development being built. These models are typically developed by expert teams over months or years, are heavy and serve single, specific purposes.

Conversely, decisions on shorter decision horizons have more dynamics and have the advantage of actual data in the run up. Approaches here are narrow, lighter-weight, and real-time.

Decisions are typically made by different groups. The decision-making authority is granted to a stakeholder or department, and a silo is created. What then follows is the development of different 'operational intelligence' tools.

One department brings in a consultancy to develop a detailed, comprehensive rules-based simulation tool which takes multiple years to deploy but delivers an accurate and defensible appraisal of a key transformational decision. Another invests in a predictive analytics tool that accurately predicts a specific aspect of the live operation and future state, which they piece together with other information to support their live decision-making.

Unified Intelligence is designed to address this exact fragmentation, achieving a holistic and unified picture of operations to deliver true intelligence. It therefore naturally sits across all decision-horizons but in different forms.

But to achieve it, it must begin at the real-time horizon: where things are most dynamic and real data is the key input.

By starting at this most dynamic decision-making edge, the picture that the Unified Intelligence capability develops is granular, live,

and has constant factual data used as both input and validation. This foundation is then extended and shaped to support tactical, strategic, and transformational decision-making. Intelligence does not need to be rebuilt, reinterpreted, or handed off between horizons; it already exists as a shared, continuously maintained understanding of how the system behaves.

How the intelligence lives.

While the underlying intelligence supports decision-making across multiple time horizons, the way it is accessed must adapt to operational reality.

For real-time, high-pressure environments, where operators cannot pause to consult an agent, the intelligence is delivered directly through existing operational channels: email, instant messaging, alerts, and workflow tools.

Where decision-making is longer-term and more consultative, deeper interaction becomes possible. Stakeholders may generate reports through dashboards or engage an agent to explore insights. Operators may test operational adjustments in a sandbox, modelling future scenarios before acting.

Unified Intelligence, a new category.

In all cases, the same, unified, continuously updating picture is used as the basis for the derived intelligence. Tactical plans are grounded in real time, operational reality. Strategic decisions are built upon dynamic history and operational memory. Decisions are joined up across the organisations.

And it's not just different decision-making groups that must be considered. Unified Intelligence is also not necessarily bounded to a single organisation or environment. It will span ecosystems and systems,

even international networks. How each actor interacts with the intelligence will vary.

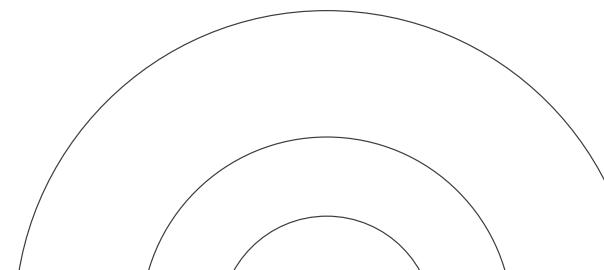
The way that Unified Intelligence must live reinforces it as an organisational capability, not a static product. It is a living layer embedded within the organisation, shifting form to meet the needs of different users, contexts, and decisions. A web of intelligence that redefines how we think about software.

Enabling technologies.

As mentioned earlier, there are several forces making Unified Intelligence a reality today: increasing data rates, advances in AI and growing operational pressures. But the wider technological advancements to truly unlock this vision go beyond just these.

The foundational component of Unified Intelligence is ontology. Ontology is how data is organised and orchestrated and critically, how the operational physics of the environment are encoded as a series of concepts, entities and relationships.

But to achieve what we are describing, a unique ontology is required. Most ontologies are static schemas and often brittle. They struggle with change, reason poorly across space and time, and collapse under real operational complexity.


Unified Intelligence requires a real-time, spatial-temporal, multi-layer ontology grounded in operational physics. When data enters the system, it is immediately anchored to what it is, where it exists, how it relates to other entities, and what it can affect. This anchoring happens before analytics or models are applied.

The ontology encodes how the operation works: constraints, dependencies, flows, queues, failure modes, and human interventions. This allows the system to be reasoned about as a living operation rather than a static diagram, and to evolve as reality evolves. Ontology provides coherence and context, but on its own, it does not produce intelligence.

To predict how an operation will evolve, Unified Intelligence requires models that operate within the ontological framework. Traditional approaches rely on large, monolithic models or rigid rules engines that attempt to approximate entire systems in a single abstraction. These approaches struggle with complexity and fail under uncertainty. Instead, we introduce the concept of Micromodels.

A Micromodel is defined by its scope, not its technique. Each Micromodel represents a specific operational behaviour, flow, delay, capacity, risk, decision thresholds, bound to concrete entities in space and time. Micromodels may be rules-based, physics-informed, statistical, or machine-learned, but they are always local, explicit, and purpose-specific.

Because Micromodels are anchored to a shared spatial-temporal ontology, their outputs are immediately meaningful and composable. Intelligence does not come from a single global model, but from the coordinated execution of many Micromodels, each reasoning about a well-defined aspect of the operation in real time. This is what enables cascading impact reasoning: understanding how local changes ripple through the system over time. As conditions change, Micromodels can be updated, replaced, or retrained independently, preserving adaptability without destabilising the system.

Generative AI completes the stack, but it does not sit at the bottom. We want to leverage the power of the LLM whilst mitigating the known shortcomings. LLMs operate above the ontology and Micromodel layers as a reasoning, synthesis, and interaction interface. LLMs do not reason over raw data in isolation. They traverse the ontology to establish context, draw on Micromodel outputs to understand dynamics, and synthesise implications across space, time, and operational scope.

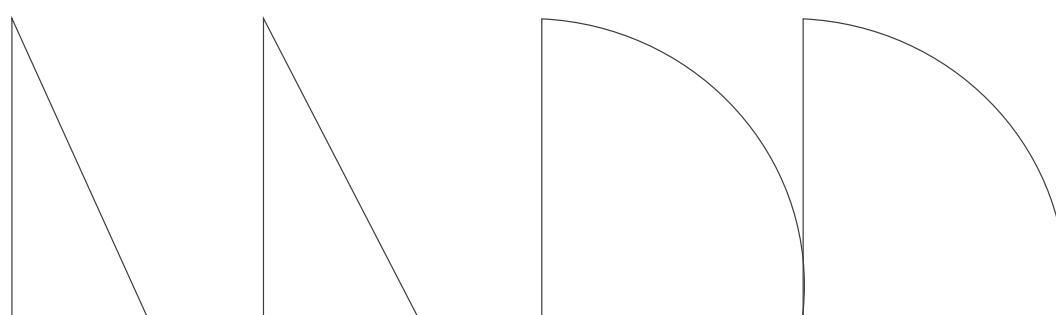
LLM agents surface insights without prompt, and articulate recommendations grounded in operational reality. The LLM can work autonomously as described but is also accessible as a copilot, supporting tactical, strategic and transformational decision-making.

LLMs further increase the importance of ontology. As interactions with operational data become more dynamic and open-ended, maintaining context requires a deeper, structured understanding of what data represents and how it relates across the system. Rather than being fed pre-packaged outputs, LLMs must retrieve information selectively from secure operational sources. Ontology provides the framework that enables this retrieval to be accurate, permissioned, and context-aware, ensuring intelligence can be surfaced without compromising privacy, security, or governance.

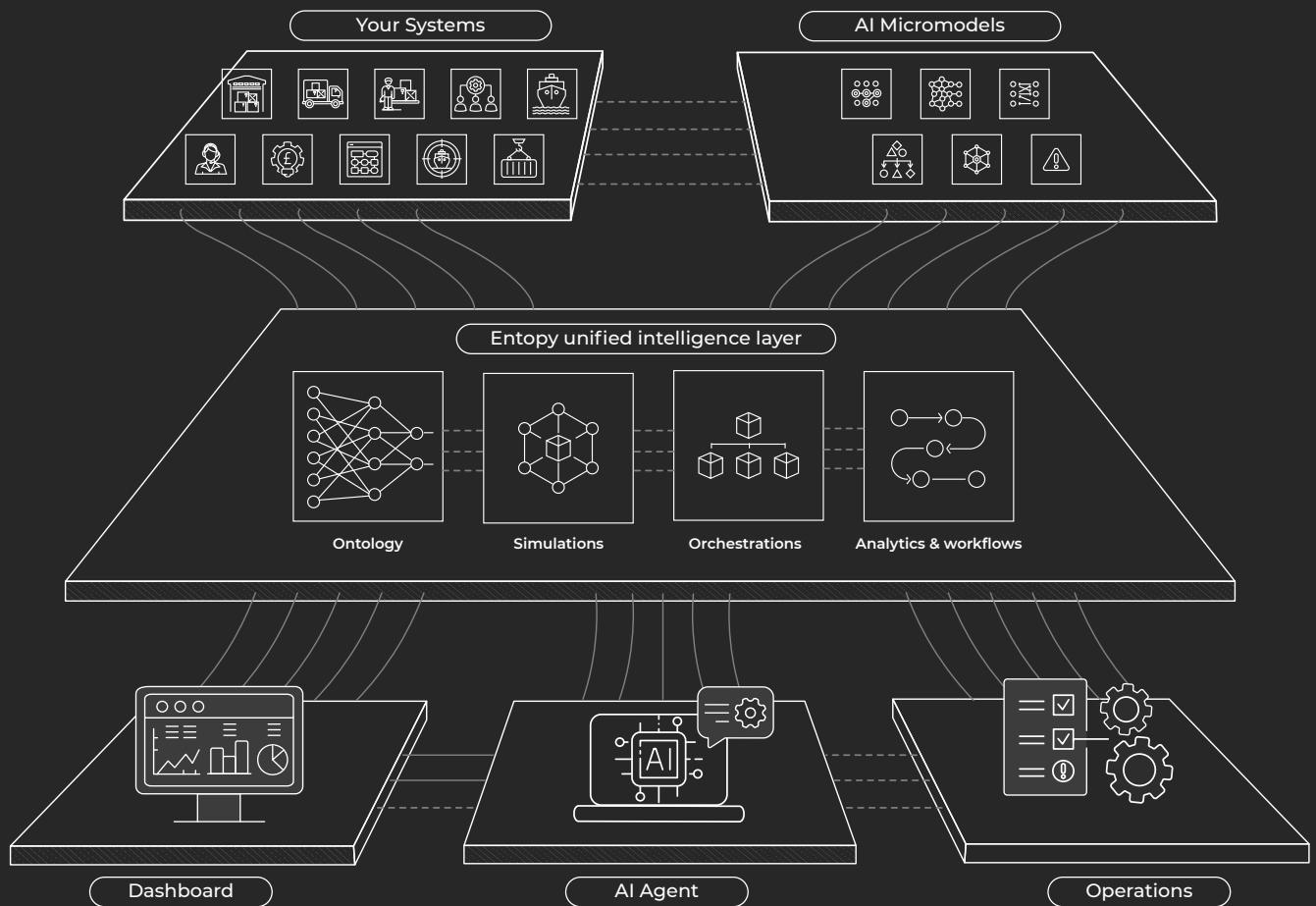
Critically, within this architecture is a live operational memory: a continuously maintained image that reflects not just what has happened, but what is happening, what is expected to happen next, and why. This memory is not a chat history or log storage. It is a living representation of operational understanding that persists across shifts, teams, and decision horizons.

Operational memory enables the LLMs with a continuous cognition capability, supporting the selection and deselection of relevant information and providing deep operational context to support the recommendation of actions to the front line. It is essential to learning and

understanding the system. It shapes where intelligence is directed, determines what is relevant, and allows insight to compound over time rather than resetting with each new observation.


Unified Intelligence does not emerge from any single technology. It emerges from the disciplined integration of ontology, Micromodels, and AI into a coherent, continuously reasoning system embedded within the organisation.

Delivering Unified Intelligence.


Because this capability must reflect the unique operational physics of each environment, it cannot be delivered purely as off-the-shelf software. It must be operationalised. This is why forward-deployed engineering (FDEs) models are essential: not just to integrate systems, but to shape how intelligence is built, trusted, and consumed.

Unified Intelligence may surface as a dashboard, a notification, a sitrep, or an automated recommendation. The interface is secondary. What matters is that intelligence exists continuously, evolves with the operation, and reaches decision-makers when and where it is needed.

Unified Intelligence is not a product, but a living capability that enables organisations to anticipate consequence, act earlier, and operate with a level of situational awareness previously reserved for high-stakes intelligence environments.

Unified Intelligence.

Entopy combines multiple AI models with real-time and historical data to deliver Unified Intelligence, connecting patterns, predicting outcomes, and providing precise, explainable insight leaders can trust with confidence.

Reimagining intelligence as an 'always-on' capability.

Unified Intelligence begins from this premise: intelligence is not a tool you consult, but a capability that persists.

Rather than producing insights only in response to interaction, it maintains a live understanding of the operational system, continuously integrating data, modelling state, and reasoning about what matters next. It does not simply describe what is happening, but evaluates what it means, how impacts will spread, and where intervention will have the greatest effect.

As AI moves through the hype cycle, the calls for demonstrable value are becoming louder. Copilots are not being used, AI slop is being regurgitated and creating mistrust. But intuitively, leaders all know it's a technology that will have profound impacts to business.

Maybe the way we are thinking about AI is wrong. Maybe it's not a product. Maybe it's not tangible. Maybe it's an embedded capability, always-on, always advising.

In the operational context at least, we believe this is the case. Thinking about Unified Intelligence not as a single technology and not as a static and definable tool but instead, as a capability, unlocks enormous potential.

Is Unified Intelligence a new category? Well, it's certainly a different way of thinking about what intelligence is and how it should exist inside an organisation. It cannot be defined easily by existing categorisations. Digital Twins represent operations. Copilots answer questions about operations. Unified Intelligence continuously understands operations and their consequences.

It has many of the hallmarks new categories have. It's often misunderstood, it's often miscategorised to aid understanding, it doesn't look or feel like existing offerings on the market, there is no standardised procurement approach.

But perhaps the most telling sign is how the technology lives inside the organisation. It is an embedded capability. Not a tool. This moves it more towards infrastructure than tooling. Infrastructure that touches many aspects of an organisation. This is a paradigm shift in how we consider data-driven intelligence.

But whether it's a new category or not is not important. The power Unified Intelligence will unlock for those organisations that adopt it is what matters. A profound transformation about how we think, act and use technology.

The real challenge is not collecting information, but understanding it quickly enough to act.

- General Stanley McChrystal

entopy.com
info@entopy.com