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This whitepaper is part of a four-part series. The 
series introduces Unified Intelligence as a new 
category, explains why 'always-on' intelligence 
is required to unlock the potential of AI, covers 
how to adopt the technology and embed it into 
complex operations, and imagines a world in 
which Unified Intelligence is ubiquitous. 



Unified Intelligence, a new category

A worked example.
It is a routine weekday at a major container port. Vessel arrival forecasts are on plan. Berth allocation 
models are stable. Yard utilisation sits comfortably within limits. Crane productivity is tracking above 
target. Crew schedules for pilotage and towage appear sufficient, with contingency capacity available.

Every dashboard is green. Every plan is considered robust.

At 09:00, a minor deviation occurs. A vessel due to arrive in twelve hours reduces its steaming speed. 
This is unremarkable; it happens frequently. The ETA prediction updates automatically, showing 
a two-hour delay. The vessel will still arrive within its allocated window. The berth plan remains 
unchanged. From a scheduling perspective, nothing has changed. From the operation’s perspective, 
everything has.

The delayed arrival compresses the pilotage sequence. A four-hour buffer between a departing vessel 
and the inbound arrival shrinks, quietly removing slack from the schedule. No constraint is breached. 
No alert is triggered.

As the day progresses, an unrelated event occurs: a crane breakdown reduces productivity on 
a different berth. The departure of the vessel alongside slips by two hours. This pushes it into direct 
overlap with the inbound vessel identified earlier. The operation remains viable, but coordination 
across pilotage and towage is now critical. The margin for error has narrowed.

The disruption is still eight hours away. There is time to intervene. But because the plan remains 
technically feasible, no changes are made.

Meanwhile, two earlier departures run longer than expected, consuming towage resources for 
extended periods. Individually, these overruns are inconsequential. Collectively, they begin to form 
a constraint. This emerges quietly, across the ecosystem, without breaching any single rule or 
threshold.

By late afternoon, the compounded effect becomes visible. Towage availability is insufficient to 
support all planned movements. One vessel must now wait until 23:00 to move. As recovery planning 
begins, a further consequence is uncovered: a late berthing will propagate forward, disrupting an 
inbound vessel scheduled for the same berth two days later.

Only now does the situation present as systemic. Only now do the decisions become difficult.

At every step, the analytics were correct. The forecasts were accurate. The plan was recalculated as new 
information emerged. No model was wrong. No tool failed. What failed was the ability to understand 
how small, reasonable changes interacted over time to reshape the behaviour of the system.

Reality moved. And the tools the operation relied upon were not designed to move with it.

This chapter explicitly explores why existing approaches to decision intelligence fail so often in 
high-consequence, highly complex, and dynamic operational contexts. It outlines how the problem is 
not a lack of data or AI. Instead, it's the absence of a continuously maintained operational truth. This 
chapter follows our first chapter in which we introduce Unified Intelligence as a new category. Its 
purpose is to bring to life why intelligence must be continuous for it to be operationally effective. 



What should have been a routine operational day deteriorated into bottlenecks, constraint violations, 
recovery pressure, and dissatisfied customers. Not because systems failed, but because reality moved 
faster than the intelligence designed to observe it.

While analytics platforms continued to display green indicators, and AI-assisted scheduling tools 
reported plans within tolerance, none of them detected the spark that lit the fire. Each system 
accurately described its own slice of the operation, yet none understood how the operation was 
actually evolving. The moment that mattered passed unnoticed.

This pattern is not unique to ports. The same failure mode appears in road traffic through major ferry 
terminals, in delayed inbound flights cascading across airport networks, and in offshore wind farms 
where weather-driven maintenance slips compress access windows and propagate through crew 
availability, vessel schedules, and energy output commitments. Different domains, identical outcome. 
The underlying issue is structural.

Operations do not exist in isolation. They are living systems composed of assets, people, rules, 
constraints, and external forces, all interacting across space and time. Decisions made in one place 
reshape the operating conditions elsewhere, often with delay, often invisibly. Yet the analytics and AI 
tools operators rely on are built as if the world were static, separable, and slow to change.

As soon as the vessel reduced speed, the operational reality of the port changed. Not incrementally, 
structurally. Slack was removed. Margins collapsed. Previously independent plans became coupled. 
What followed was not a single failure, but a sequence of locally rational decisions interacting in ways 
no system was reasoning about.

The disruption did not emerge because something went wrong. It emerged because nothing was 
watching how reality itself was shifting. This is the gap Unified Intelligence exists to close. Operational 
failure in complex systems occurs when reality changes faster than intelligence can update.

Reality 
changes.
No plan survives first contact with reality.





The failure of existing approaches is not 
accidental. It is inevitable, given how operational 
intelligence has been assembled. As outlined in 
the first chapter, what is commonly labelled 
'operational' or 'decision' intelligence is not 
a single capability, but a stack of layers, each 
solving a specific class of problem. Thinking in 
terms of layers of a stack matters, because each 
one feeds the next, and therefore naturally 
becomes entangled and harder to define. We 
spoke earlier about the variety of technologies in 
play, but to fully understand how Unified 
Intelligence compares, we must explore each 
layer of the stack.

Data integration & semantic formation: At the 
base of the stack sits data integration and 
semantic formation. The problem this layer 
addresses is real: operational data is fragmented, 
siloed, and difficult to query. Platforms such as 
Databricks, Snowflake, and Palantir Foundry have 
made significant progress here, enabling 
organisations to unify data into a coherent, 
queryable structure. However, this layer stops 
short of intelligence. The data is typically batch-
ingested rather than live. The resulting view is 
descriptive, not dynamic. Dashboards built on 
top of it show what has happened, not how the 
operation is currently evolving. Forecasts derived 
from this data project forward from historical 
patterns, assuming continuity with the past. As 
soon as reality deviates, a vessel slows 
unexpectedly, weather shifts, a human 
intervenes, this layer becomes stale. It does not 
break, but it silently falls behind.

Analytics and AI models: The next layer 
introduces AI, most commonly in the form of 
machine-learning or rules-based models. These 
models are valuable. They identify patterns, 
improve forecasts, and outperform simple 
heuristics or averages. In operational 
environments where data is sparse, rules-based 
models encode hard-won expert knowledge and 
perform essential functions. But these models 
are inherently bounded. Each model is designed 
to predict a specific aspect of the operation: 
an ETA, a demand curve, a weather window, a risk 
score. They operate within tightly defined scopes 
and assumptions. Their outputs are typically 
surfaced as numbers on a screen, predictions 
detached from the broader operational context.

When reality shifts, these models often remain 
technically ‘correct’ while becoming 
operationally irrelevant. They do not understand 
how their outputs interact with other constraints, 
decisions, or human actions elsewhere in 
the system.

Planning, optimisation, and Digital Twins: 
Above analytics sit planning and optimisation 
tools, including most traditional Digital Twin 
technologies. These systems combine data and 
predictions to optimise schedules, resource 
allocation, and workplans under defined 
constraints. They are powerful within their design 
envelope. Crucially, that envelope assumes 
deliberation. These tools are well suited to 
strategic and transformational decisions, where 
scenarios can be explored, assumptions adjusted, 
and outcomes reviewed. In live operations, 
however, they rely heavily on human input: 
someone must notice a deviation, decide to 
intervene, update assumptions, and rerun the 
plan. As operational tempo increases, this 
interaction model breaks down. Plans remain 
mathematically valid while becoming 
operationally misaligned. Optimisation does not 
fail; it simply optimises the wrong version of 
reality.

Agents and copilots: The next layer introduces 
agents and copilots. By leveraging LLMs, these 
tools make data, models, and workflows more 
accessible. Operators can query across systems, 
synthesise information, and execute tasks more 
efficiently. This is a genuine improvement in 
usability, but not a solution to the core problem.
Agents and copilots are reactive by design. They 
require an operator to know what to ask. 
If an emerging consequence is not yet visible, no 
one thinks to prompt an AI. The most important 
moments are therefore the least likely to be 
interrogated.

Across all these layers, the same dependency 
exists: intelligence is only produced when 
a human interacts with the system. In live 
operations, this is precisely where failure occurs. 
Events unfold faster than humans can observe, 
interpret, and query. More importantly, early 
signals often appear insignificant in isolation. The 
event may be noticed, but its downstream 
consequences remain hidden.

As demonstrated in the opening example, 
the operation does not fail because data is 
missing or models are inaccurate. It fails because 
no system is continuously reasoning about how 
reality itself is changing.

What is required in these scenarios is, perhaps, 
more uncomfortable: Intelligence that exists 
without being asked for.



If intelligence only exists when humans look for it, then in 
live operations intelligence will always arrive too late.

Always on 
intelligence.

A report from the Massachusetts Institute of 
Technology found that 95% of enterprise AI 
projects fail to move from pilot to production. 
The reasons cited are familiar: misalignment with 
real business problems, internal builds struggling 
compared to vendor-led solutions, and a heavy 
concentration of effort in sales and marketing 
functions with limited operational return.

But these explanations stop short of the deeper 
issue. The real failure is not technological or 
organisational. It is existential. The question most 
AI projects never answer is how intelligence is 
supposed to exist within a live operation.

In the opening example, the root cause of failure 
was a non-obvious deviation: a small change in 
vessel speed that triggered a cascading 
sequence of impacts later in the day. No 
individual operator saw it in time. No system 
flagged it. Dashboards remained green because 
each tool observed its own slice of reality in 
isolation. The failure emerged across the system, 
not within any single component.

This exposes a structural flaw in how intelligence 
is delivered today. Most AI systems require 
prompting. Intelligence is therefore provided only 
when it is asked for. The same is true of planning 
and optimisation tools: they require interaction to 
surface insight. That interaction assumes 
a human has already recognised that something 
is wrong.

This assumption is fatal in dynamic systems. If an 
operator knows to ask, the value of the 
intelligence has already decayed. The most 
valuable intelligence exists before awareness, 
when the signal is weak, the impact is distant, 
and the problem is still shapeable. 

The concept of always-on intelligence resolves 
this misalignment. It does not wait to be asked. 
It exists continuously, precisely because in 
complex, fast-moving systems, the most 

important changes occur before anyone knows 
to look. 

Always-on refers to far more than notifications. 
It describes a continuously maintained 
intelligence layer: a dynamic operational web 
that updates as new data arrives. Live signals feed 
models, predictions adjust in real time, and 
events propagate through a federated network of 
Micromodels anchored in a shared ontology. 
Intelligence is not produced in episodes, it is 
sustained as a living, evolving understanding 
of the system.

Removing noise.

The greatest risk of always-on intelligence is not 
technical complexity, but overload. A system that 
continuously monitors an operation will detect 
countless deviations, correlations, and anomalies. 
If every change produces an alert, intelligence 
collapses into noise. Operators disengage. Trust 
erodes. The system is muted or ignored, and the 
very capability designed to prevent failure 
becomes part of the problem.

For intelligence to be effective, it must do more 
than observe. It must exercise judgement. This 
means reasoning about relevance, criticality, and 
consequence. Not every deviation matters. Not 
every signal deserves attention. Intelligence must 
determine who needs to know, when they need 
to know, and what level of intervention is justified. 
Information must be filtered, contextualised, and 
prioritised before it reaches a human. 

This judgement must be sophisticated and grow 
over time. What matters depends on operational 
state, proximity to thresholds, compounding risk, 
and how consequences are likely to propagate. 
A minor deviation in one context may be 
irrelevant; the same deviation in another may be 
systemically dangerous. Always-on intelligence 
succeeds only when it reduces cognitive load 



rather than increasing it. Its value lies not in 
surfacing more information, but in deciding what 
not to surface. Signal emerges when noise is 
actively suppressed.  Without this capability, 
continuity becomes liability. With it, continuous 
intelligence becomes usable, trusted, and 
operationally decisive. 

To determine what matters and what does not, 
intelligence must understand more than 
thresholds or isolated metrics. It must maintain a 
live awareness of where the operation is in space 
and time, how close it is to critical boundaries, 
and how small changes can compound into 
system-wide effects.

In complex operations, meaningful failure rarely 
originates as a large, obvious event. It emerges 
when minor deviations propagate through 
tightly coupled systems, interacting with 
constraints, human decisions, and timing in ways 
that are invisible in isolation. Identifying these 
trajectories requires intelligence that reasons 
about propagation, not just detection. This 
capability is known as cascading impact 
reasoning. It is not an enhancement; it is 
foundational. 

Understanding cascading impacts.

Cascading impact reasoning understands how 
events propagate through an operational 
network and continuously evaluates how events 
alter the live operational state and how those 

alterations influence adjacent assets, processes, 
and decisions over time. Events are captured as 
they occur. Local models update continuously. 
A reasoning layer evaluates second and third-
order effects across the system.

• If a vessel arrives late, what downstream 
berth movements are affected?

• If a road incident occurs, how does traffic 
displacement evolve over the next hour?

• If a weather window narrows, which crews, 
assets, and commitments are at risk?

These are not one-off analyses. They are ongoing, 
stateful workflows that must execute 
continuously, without human prompting. 
The intelligence cannot wait for an operator to 
ask what the impact might be, because by the 
time the question is formed, the window to 
intervene has often passed.

Cascading impact reasoning, combined with 
selective filtering and prioritisation, is what 
transforms continuous monitoring into usable 
intelligence. It allows the system to surface only 
those developments that are likely to matter, to 
the right people, at the right moment. Without 
this capability, always-on systems generate noise. 
With it, they generate foresight.

Unified Intelligence, a new category. 

But what about 
the data?
We have come a long way in this paper without explicitly addressing one of the most critical 
prerequisites for Unified Intelligence: access to data. Without data, intelligence cannot exist.

One of the enabling forces behind Unified Intelligence, as described earlier, is the apparent abundance 
of data now available. Operational environments are increasingly instrumented. Sensors are 
proliferating. Digital systems capture more detail than ever before. Awareness of data’s value has 
grown. All of this is true. Yet in real operational contexts, the data required to understand how systems 
behave rarely sits within a single organisation. It spans ecosystems of operators, partners, suppliers, and 
regulators. The question is therefore not whether data exists, but whether it will be shared.



Data sharing is not a new discussion. It is often framed in terms of infrastructure, interoperability, 
governance, security, and legal mechanisms. These are essential considerations. Any Unified 
Intelligence capability must be built on robust data-sharing foundations that allow information to be 
secured, segmented, permissioned, and governed appropriately across organisational boundaries. 
Without this, trust and safety are compromised. But these mechanisms, while necessary, are not 
sufficient.

Data is not shared because it can be. It is shared because doing so creates value. Simply exposing data 
is not a benefit. Value only emerges when shared data leads to better decisions, decisions that could 
not have been made otherwise, and outcomes that materially improve performance, safety, or 
resilience.

This is where many existing approaches struggle. They begin with the assumption that intelligence is 
strategically important, then immediately focus on 'unlocking' data sharing as the primary challenge. 
The conversation quickly moves into abstract, sensitive territory, negotiating hypothetical future value 
without any tangible proof. The 'so what' is deferred.

Seeing is believing. Believing is seeing. 

Unified Intelligence reverses this dynamic. As we discuss in the next chapter, it is designed to be 
deployed iteratively, starting with a narrow, high-consequence substrate of the system. It does not  
require perfect data coverage across the entire ecosystem from day one. By design, it grows and 
expands as data becomes available. Early deployments demonstrate real, observable intelligence: 
foresight that changes decisions and alters outcomes.

This shifts the data-sharing conversation from abstraction to reality. Intelligence is no longer promised; 
it is shown. Stakeholders can see the value being created. They can observe decisions being made 
earlier, risks being avoided, and coordination improving. Trust is earned through demonstrated impact, 
not hypothetical upside. The conversation of data sharing becomes quid pro quo.



In this way, Unified Intelligence creates a pull for data sharing. Proven intelligence leads to belief. Belief 
leads to participation. Participation expands data availability, which in turn strengthens the 
intelligence.

For Unified Intelligence to be realised, data must be shared. But for data to be shared at scale, 
intelligence must be proven first. The sequence matters. Unified Intelligence succeeds by putting 
realised understanding at the front and letting data sharing follow through action.

Unification compounds insight.

A common concern in data-driven initiatives is whether there is 'enough' data. Organisations invest 
significant time and effort defining taxonomies, cataloguing sources, and performing exhaustive 
analysis to achieve completeness before intelligence can begin. This instinct is understandable, but it 
is also misplaced.

Unified Intelligence does not emerge fully formed. Like any living system, it grows. As it grows, its data 
requirements evolve. Information that appears marginal or irrelevant today may become critical as the 
operational context changes or as new patterns of behaviour emerge. Attempting to define all future 
data needs in advance is not only impractical, it delays value.

More importantly, unification changes the nature of data itself. When disparate data sources are 
connected within a shared operational frame of reference, new information is created. This is derived 
data: insights that do not exist in any single source but emerge from their combination. Raw 
observations become meaningful only when they are placed in context, anchored in space, time, 
assets, constraints, and relationships.

Derived data is where compounding value begins. As more of the operation is unified, the intelligence 
does not improve linearly. It deepens. New dependencies become visible. Latent constraints surface. 
Early signals that were previously indistinguishable from noise acquire meaning. Insight compounds 
because understanding expands. This is why Unified Intelligence benefits from iteration rather than 
completeness. Each step of unification not only consumes data, but produces new understanding that 
reshapes what data matters next.
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